Molybdenum nitrogenase of Azotobacter chroococcum. Tight binding of MgADP to the MoFe protein.

نویسندگان

  • R W Miller
  • R R Eady
چکیده

The dye-oxidized or dithionite-reduced forms of the MoFe protein of molybdenum nitrogenase of Azotobacter chroococcum were shown to bind 2 mol of MgADP/mol of protein, as determined by column equilibrium techniques. The gel-filtration elution profile of unbound Mg[14C]ADP was not symmetrical, consistent with a low rate of dissociation from the protein. Symmetrical elution profiles were observed for the oxidized Fe protein of nitrogenase, which bound 2 mol of MgADP/mol of protein. The low rate of dissociation of MgADP from MoFe protein was shown by non-equilibrium column techniques, where 1 mol of MgADP/mol of MoFe protein remained tightly bound during chromatography. Very weak binding of MgATP (less than 0.01 mol of MgATP/mol of MoFe protein) to dye-oxidized but not to dithionite-reduced MoFe protein was observed. These results are discussed in terms of their relevance to the catalytic cycle of nitrogenase catalysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy transduction by nitrogenase: binding of MgADP to the MoFe protein is dependent on the oxidation state of the iron-sulphur 'P' clusters.

Hydrolysis of MgATP to MgADP is essential for nitrogenase action. There is good evidence for binding of both nucleotides to the Fe protein of nitrogenase, but data indicating their binding to the MoFe protein have been controversial [see Miller and Eady (1989) Biochem. J. 263, 725-729]. The binding of MgADP to the MoFe protein of nitrogenase of Klebsiella pneumoniae was investigated by non-equi...

متن کامل

Covalent modification of nitrogenase MoFe protein by ADP.

MgADP- reacted with the nitrogenase molybdenum-iron (MoFe) protein of Klebsiella pneumoniae (Kp1) over a period of 2 h to yield a stable, catalytically active conjugate. The isolated protein exhibited a new, broad 31P NMR resonance at -1 p.p.m. lacking phosphorus J coupling. The adenine ring of [8-14C]ADP remained associated with the conjugate. A covalently bound nucleotide was identified as AM...

متن کامل

Substrate Pathways in the Nitrogenase MoFe Protein by Experimental Identification of Small Molecule Binding Sites

In the nitrogenase molybdenum-iron (MoFe) protein, we have identified five potential substrate access pathways from the protein surface to the FeMo-cofactor (the active site) or the P-cluster using experimental structures of Xe pressurized into MoFe protein crystals from Azotobacter vinelandii and Clostridium pasteurianum. Additionally, all published structures of the MoFe protein, including th...

متن کامل

Hydrolysis of nucleoside triphosphates other than ATP by nitrogenase.

The hydrolysis of ATP to ADP and P(i) is an integral part of all substrate reduction reactions catalyzed by nitrogenase. In this work, evidence is presented that nitrogenases isolated from Azotobacter vinelandii and Clostridium pasteurianum can hydrolyze MgGTP, MgITP, and MgUTP to their respective nucleoside diphosphates at rates comparable to those measured for MgATP hydrolysis. The reactions ...

متن کامل

Characterization of an oxygen-stable nitrogenase complex isolated from Azotobacter chroococcum.

In crude cell-free extracts of Azotobacter chroococcum, nitrogenase was much less sensitive to irreversible inactivation by O2 than was the purified enzyme. When nitrogenase was partially purified by anaerobic discontinuous sucrose-density-gradient centrifugation, O2-tolerance was retained. This preparation was considerably enriched in four polypeptides, three of which were derived from the Mo-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 263 3  شماره 

صفحات  -

تاریخ انتشار 1989